Flexible and self-calibrating current- steering Digital-to-Analog Converters: analysis, classification and design

نویسنده

  • Georgi Ivanov Radulov
چکیده

This research work proposes new concepts of flexibility and self-correction for currentsteering digital-to-analog converters (DACs) which allow the attainment of broad functional and performance specifications, high linearity, and reduced dependence on the fabrication processes. This work analytically investigates the DAC linearity with respect to the accuracy of the DAC unit elements. The main novelty of the proposed approach is in the application of the Brownian Bridge (BB) process to precisely describe the DAC Integrated-Non-Linearity (INL). The achieved results fill a gap in the general understanding of the most quoted DAC specification the INL. Further, this work introduces a classification of the highly diverse current-steering DAC correction methods. The classification automatically points to methods that do not exist yet in the open literature (gaps). Based on the clues of the common properties and identified common techniques in the introduced classification, this work then proposes exemplary solutions to fill in the identified gaps. Further, this work systematically analyses self-calibration correction methods for the DAC mismatch errors. Their components are analyzed as three building blocks: selfmeasurement, error processing algorithm and self-correction block. This work systemizes their alternative implementations and the associated trade-offs. The findings are compared to the available solutions in the literature. The efficient calibration of the DAC binary currents is identified as an important missing method. This work proposes a new methodology for correcting the mismatch errors of both the nominally identical unary and the scaled binary DAC currents. Further, this work proposes a new concept for DAC flexibility. This concept is realized in a new flexible DAC architecture. The architecture is based on a modular design approach that uses parallel sub-DAC units to realize flexible design, flexible functionality and flexible performance. The parallel sub-DAC units form a mixed-signal platform that is capable of many DAC correction methods, including calibration, error mapping, data reshuffling, and harmonic distortion cancellation. This work presents the implementation and measurement results of three DAC testchip implementations in 250nm, 180nm, and 40nm standard CMOS IC technologies. The test-chips are used as a tool to practically investigate, validate, and demonstrate two main concepts of this thesis: self-calibration and flexibility. Particularly, the 180nm test-chip is the first reported DAC implementation that calibrates the errors of all its current sources and features flexibility, as suggested in this work. The calibration of all current sources makes the DAC accuracy independent of the tolerances of the manufacturing process. The overall DAC accuracy depends on a single design parameter – the correction step. The third test-chip is the first reported DAC implementation in 40nm CMOS process. A 12 bit DAC core in this test-chip occupies only 0.05mm 2 of silicon area, which is the smallest reported area for a 12 bit current-steering DAC core.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Architecture for Current-steering Digital to Analog Converters

This paper presents a novel Current Steering Digital to Analog Converter architecture to reduce area as well as power dissipation. The current cells of conventional binary weighted architecture require larger size of transistors for MSBs. In this paper, same sized current cell transistors for MSBs as that of LSBs and a current mirror circuit is used between the load and MSBs to provide necessar...

متن کامل

Analysis of Integral Nonlinearity in Radix-4 Pipelined Analog-to-Digital Converters

In this paper an analytic approach to estimate the nonlinearity of radix-4 pipelined analog-to-digital converters due to the circuit non-idealities is presented. Output voltage of each stage is modeled as sum of the ideal output voltage and non-ideal output voltage (error voltage), in which non-ideal output voltage is created by capacitor mismatch, comparator offset, input offset, and finite ga...

متن کامل

Improving adaptive resolution of analog to digital converters using least squares mean method

This paper presents an adaptive digital resolution improvement method for extrapolating and recursive analog-to-digital converters (ADCs). The presented adaptively enhanced ADC (AE-ADC) digitally estimates the digital equivalent of the input signal by utilizing an adaptive digital filter (ADF). The least mean squares (LMS) algorithm also determines the coefficients of the ADF block. In this sch...

متن کامل

A Design of Linearity Built-in Self-Test for Current-Steering DAC

In this paper, a current-mode Built-In Self-Test (BIST) scheme is proposed for on-chip estimating static non-linearity errors in current-steering digital-to-analog converters (DACs). The proposed DAC BIST scheme is designed to verify a 10-bit segmented current-steering DAC, consist of a 5-bit coarse DAC and a 5-bit fine one. This proposed BIST scheme includes a current-mode sample-and-differenc...

متن کامل

Current-steering Digital-to-analog Converters

Data converters, i.e., analog-to-digital converters (ADCs) and digital-to-analog converters (DACs), are interface circuits between the analog and digital domains. They are used in, e.g., digital audio applications, data communication applications , and other types of applications where conversion between analog and digital signal representation is required. This work covers different aspects re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010